
Pawn Smart Contracts
Security Audit Report

Pawn Finance
Updated Final Audit Report: 27 August 2021

Table of Contents
Overview

Background

Project Dates

Review Team

Coverage

Target Code and Revision

Supporting Documentation

Areas of Concern

Findings

General Comments

System Design

Code Quality

Documentation

Scope and Dependencies

Specific Issues & Suggestions

Issue A: Balance Recording Forces Check-Effects Anti-Pattern

Issue B: Minimized Replay Attack

Issue C: Loan Term Countdown Can Begin Before Loan is Funded [Known Issue]

Suggestions

Suggestion 1: Make Users Aware of Centralization

Suggestion 2: Remove Unnecessary Require Statement

Suggestion 3: Improve Documentation

About Least Authority

Our Methodology

Security Audit Report | Pawn Smart Contracts | Pawn Finance 1
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Overview
Background
Pawn Finance has requested that Least Authority perform a security audit of their Pawn Smart Contracts,
a peer-to-peer lending and borrowing protocol on the Ethereum blockchain.

Project Dates
● June 16 - June 29: Code review (Completed)
● July 2: Delivery of Initial Audit Report (Completed)
● July 21 - 22: Verification (Completed)
● July 23: Delivery of Final Audit Report (Completed)
● August 27: Delivery of Updated Final Audit Report to include Issue C (Completed)

Review Team
● Gabrielle Hibbert, Security Researcher and Engineer
● Nathan Ginnever, Security Researcher and Engineer
● May-Lee Sia, Security Researcher and Engineer

Coverage
Target Code and Revision
For this audit, we performed research, investigation, and review of the Pawn Smart Contracts followed by
issue reporting, along with mitigation and remediation instructions outlined in this report.

The following code repositories are considered in-scope for the review:
● Pawn Smart Contracts: https://github.com/Non-fungible-Technologies/pawn-contracts

Specifically, we examined the Git revisions for our initial review:

270108f9c921168574a8f8a0134b405aefb228a8

For the verification, we examined the Git revision:

4561311ad7bdf988cde7b8d5fc542792a82372b1

For the verification of Issue C, we examined the Git revision:

4b00f6a2fb718ca883411f6db6f8c26a9b1c59cf

For the review, this repository was cloned for use during the audit and for reference in this report:

https://github.com/LeastAuthority/pawnfi-contracts/tree/in-scope

All file references in this document use Unix-style paths relative to the project’s root directory.

In addition, any dependency and third party code, unless specifically mentioned as in-scope, were
considered out of scope for this review.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 2
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Non-fungible-Technologies/pawn-contracts
https://github.com/LeastAuthority/pawnfi-contracts/tree/in-scope

Supporting Documentation
The following documentation was available to the review team:

● README.md:
https://github.com/Non-fungible-Technologies/pawn-contracts/blob/main/README.md

● STATES.md:
https://github.com/Non-fungible-Technologies/pawn-contracts/blob/main/doc/STATES.md

● PAWNFI-P2PLoanArchitecture-V1.pdf shared with Least Authority via Telegram on 18 June 2021
● 21-06-25 - Pawn.fi Terms & Conditions - DRAFT.pdf shared with Least Authority via Telegram on

25 June 2021

Areas of Concern
Our investigation focused on the following areas:

● Correctness of the implementation;
● Denial of Service (DoS) and other security exploits that would impact the smart contracts

intended use or disrupt execution;
● Vulnerabilities in the smart contracts code;
● Protection against malicious attacks and other ways to exploit smart contracts;
● Inappropriate permissions and excess authority;
● Data privacy, data leaking, and information integrity; and
● Anything else as identified during the initial analysis phase.

Findings
General Comments
Pawn Finance is a protocol that enables peer-to-peer lending and borrowing on the Ethereum blockchain.
Users of the system can act as borrowers or lenders by which borrowers are able to collateralize ERC-20,
ERC-721, or ERC-1155, and draw an ERC-20 loan. Users acting as lenders can provide liquidity to the
protocol and earn interest proportional to the term of the loan. The protocol collects fees on loan
origination. In the case of a borrower defaulting on the terms of a loan, the lender may claim the
borrower’s collateral.

The critical functions of the protocol, such as loan origination, transfer of funds to borrowers and lenders,
and transfer of claimed collateral is performed in LoanCore.sol. Users interact with this module
through role based access controllers, which limit the use of functions to specific, permissioned roles.

System Design
Our team performed a broad and comprehensive review of the system design and implementation. We
investigated potential security vulnerabilities and found that security has been strongly considered in the
system design. OpenZeppelin security features are implemented correctly, including correct domain
separation in ERC-712 signatures, as well as correct implementations of counters and modern safe math.
SafeERC20 is used to remove return value bug concerns. In addition, functions in the codebase are
implemented with correct access modifiers for permissioned roles.

In examining ERC721Permit.sol, we found that mitigations have been implemented for potential
vulnerabilities introduced by EIP-712, including zombie fund attacks. We also found that the Pawn smart
contracts use access controllers to interact with LoanCore.sol, enabling atomic token transfers and
mitigating against the possibility of front-running issues.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 3
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Non-fungible-Technologies/pawn-contracts/blob/main/README.md
https://github.com/Non-fungible-Technologies/pawn-contracts/blob/main/doc/STATES.md
https://github.com/OpenZeppelin
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/utils/SafeERC20.sol

We explored the possibility of potential edge-case re-entrance attacks and found that, if a corrupt ERC-20
token is used as principal, the transfer method could contain a call back to LoanCore.sol. This
call back will create many loans under the same principal, since the balance of the principal is not
updated in LoanCore.sol until after that call, creating a possibility for a re-entrance attack. Although we
did not identify any scenario by which this issue would result in a feasible attack, we recommend an
alternative method to record the balance of principal held in LoanCore.sol that mitigates the risk of
edge-case vulnerabilities (Issue A).

Centralized Administrator Account

Although we did not identify issues that are considered to be security critical, we found that there are
centralized features that users should be made aware of. For example, LoanCore.sol performs the key
functions of the protocol and these functions are restricted by roles with specific permissions.
Furthermore, DEFAULT_ADMIN_ROLE sets protocol fees and also has the ability to pause the core
functionality of the protocol. We found no documentation on the rationale and use cases for these roles
and suggest that users be made aware of these features in order to better protect their assets
(Suggestion 1).

Off-Chain Communication

In initializing a new loan, the Pawn Finance protocol requires that a borrower or lender propose loan terms
to which the counter party agrees. However, reaching agreement on the loan terms requires the borrower
and lender to communicate off-chain in order to continue the origination process.

While investigating this off-chain interaction, our team identified a potential opportunity for a replay
attack. Given that the loan terms agreement is created off-chain, there is a possibility that the party
broadcasting the signed loan terms uses a previous loan terms agreement, one that the counterparty did
not intend to be used. We suggest that this off-chain interaction be clarified in the documentation so that
a more comprehensive security evaluation of this interaction can be performed. Furthermore, we
recommend that users be explicitly informed of the possibility of reusing loan terms agreements (Issue
B).

We commend the Pawn Finance team for prioritizing security considerations in their system design and
implementation. We encourage any known security flaws to be resolved or mitigated using accepted
security methods. Identifying security vulnerabilities and addressing them as early as possible in the
design, development, and deployment process facilitates efficiency, reduces costs, and builds user trust,
thus enabling broader adoption.

Code Quality
The Pawn Finance smart contract code is well written and organized, and adheres to widely accepted
standards and security best practices. Additionally, the implementation demonstrates that the Pawn
Finance team has minimized computational complexity and gas costs, which benefits user security and
reduces transaction costs. We suggest removing the redundant require statement and exploring
opportunities to further reduce complexity to the extent possible in order to minimize the attack surface
(Suggestion 2).

Tests

Our team found a commendable level of test coverage for success and failure cases, which helps to
identify potential edge cases, and helps protect against errors and bugs, which may lead to vulnerabilities
or exploits. The Pawn Finance smart contracts test suite was a valuable aid in investigating and
determining if the implementation behaves as intended.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 4
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

Documentation
Our team found the supporting documentation provided by the Pawn Finance team to be sufficient and
accurate in describing each of the components of the system and the interactions between those
components. In addition, we noted adherence to NatSpec guidelines for best practices on Solidity code
comments, further facilitating understanding the intended behavior of each of the components. However,
we recommend that the documentation provided by the Pawn Finance team be incorporated into the
in-scope repository, in order to provide easier access and better guidance on the intended behavior of the
system (Suggestion 3).

In addition, while most of the smart contracts have sufficient documentation for every function, some are
more comprehensively documented than others (e.g. docs/interfaces/IPromissoryNote.md
provides less comprehensive documentation than some of the other smart contracts). We recommend
documenting all smart contracts consistently, including functions whose implementations appear
obvious, in order to reduce the potential for errors or confusion about intended functionality (Suggestion
3).

Scope and Dependencies
The scope for the security audit was sufficient and included all security critical components. In addition,
we found that well audited and maintained third-party dependencies have been utilized and we did not
identify any potential security vulnerabilities resulting from their use.

Specific Issues & Suggestions
We list the issues and suggestions found during the review, in the order we reported them. In most cases,
remediation of an issue is preferable, but mitigation is suggested as another option for cases where a
trade-off could be required.

ISSUE / SUGGESTION STATUS

Issue A: Balance Recording Forces Check-Effects Anti-Pattern Resolved

Issue B: Minimized Replay Attack Unresolved

Issue C: Loan Term Countdown Can Begin Before Loan is Funded [Known
Issue]

Resolved

Suggestion 1: Make Users Aware of Centralization Unresolved

Suggestion 2: Remove Unnecessary Require Statement Resolved

Suggestion 3: Improve Documentation Unresolved

Issue A: Balance Recording Forces Check-Effects Anti-Pattern

Location

contracts/LoanCore.sol#L125

Security Audit Report | Pawn Smart Contracts | Pawn Finance 5
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://docs.soliditylang.org/en/v0.8.6/natspec-format.html
https://github.com/LeastAuthority/pawnfi-contracts/blob/master/contracts/LoanCore.sol#L125

Synopsis

The method chosen to record the balances held by the LoanCore.sol smart contract is to check the
smart contract’s balance after a transfer has occurred, forcing the smart contract to update the state of a
balance after a call to the ERC-20 token smart contract has been made. This results in a possibility for a
corrupt ERC-20 token to be used to re-enter the loan creation process. As good practice, the
check-effects-interactions pattern should be used at all times.

Impact

Using a corrupt ERC-20 token to re-enter the loan creation process allows many invalid loans to be stored
on the smart contract originating from the same loan terms agreement. However, the impact of this is
likely negligible and would only cost the attacker.

Feasibility

Given that we could not determine an incentive for this attack, we consider this attack to be unlikely.

Remediation

We recommend using the loan state data, data.terms.principal, to update and record the balances.
This will allow the LoanCore.sol smart contract to prevent an ERC-20 transfer from re-entering on line
110, since the received amount would now be updated.

Status

The Pawn Finance team refactored the code in LoanCore.sol to follow a stronger
checks-effects-interactions pattern by moving the token transfer until after the token balance is updated
(now on Line 119).

Upon review of the pull request where the above changes were made, the Pawn Finance team noted an
issue with Fee on Transfer tokens and other tokens with nonstandard handling of transfers, causing the
potential to miscalculate their internal balance. The Pawn Finance team decided to replace the previous
way of updating balances, by pushing them into a mapping, with the use of transferFrom and
safeTransfer patterns. We examined these changes and found no issues.

Verification

Resolved.

Issue B: Minimized Replay Attack

Location

contracts/OriginationController.sol#L33

Synopsis

In order to initialize a loan, there is an off-chain agreement that is made between lender and borrower, in
which the loan terms are set. This loan terms agreement is then used to create a loan. This agreement is
signed by either the borrower or the lender off-chain. It is required that the counterparty of the agreement
then broadcast the transaction on-chain, effectively signing the agreement themselves. There is no nonce
in the agreement signed, meaning that if multiple iterations of the agreement are signed by one party, the
other may broadcast an older version of the agreement.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 6
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/Non-fungible-Technologies/pawnfi-contracts/commit/a8ed8683257eceb84808c3446b01aaaea2b4a53c
https://github.com/LeastAuthority/pawnfi-contracts/blob/master/contracts/OriginationController.sol#L33

Impact

If a loan terms agreement is iterated off-chain, an older agreement might be used by a counterparty
causing a loan to be started that a counterparty did not intend to be started, resulting in one of the parties
carrying suboptimal loan terms.

Feasibility

The feasibility of this attack could not be assessed from the scope of this audit. The case of multiple
iterations of loan terms agreements may be limited in possibility.

Mitigation

The Pawn Finance team has responded to this issue noting that this case should not be possible due to
application code. However, we assert that application code can be bypassed on-chain, and a bug or
incorrect usage of the protocol may result in an issue. The Pawn Finance team also responded that there
is no conceivable incentive to perform a replay attack unless a mistake is made during the iteration of a
loan terms agreement. Our team is not able to confirm this assertion.

The decentralized approach to solving this issue involves using a nonce on agreements and requiring a
delay in the start of a loan for a counterparty to challenge an old loan agreement being used. This is not a
trivial design and we do not suggest that this be implemented.

We recommend that the application warn users when they sign a loan terms agreement that this action is
irreversible and that no further iterations of the agreement should be made. If a loan agreement must be
updated off-chain, it should be known that there is no guarantee that the older signed agreement will not
be used to start a loan. This extends to any point in the future.

Status

The Pawn Finance team responded that they intend to address this issue in the future. As a result, this
issue remains unresolved at the time of verification.

Verification

Unresolved.

Issue C: Loan Term Countdown Can Begin Before Loan is Funded [Known
Issue]

Location

contracts/OriginationController.sol#L33

Synopsis

The Pawn Finance team identified an issue where, in OriginationController.sol, intializeLoan
uses an absolute due date to initialize a loan when calling createLoan and startLoan from
LoanCore.sol. However, upon loan creation, the repayment term will begin counting down towards an
absolute due date without taking into account whether or not a loan has been funded.

Impact

In a worst-case scenario where a lender has negotiated a short repayment term, a borrower could default
on a loan without having received the intended funds.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 7
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/pawnfi-contracts/blob/270108f9c921168574a8f8a0134b405aefb228a8/contracts/OriginationController.sol#L33

Technical Details

A loan requires a repayment term to be originated, which can be represented using a due date. In
contracts/OriginationController.sol#L64-L65:

uint256 loanId = ILoanCore(loanCore).createLoan(loanTerms);

ILoanCore(loanCore).startLoan(lender, borrower, loanId);

The call data loanTerms passes an absolute dueDate to createLoan, which is then passed to
startLoan. However, this due date is negotiated off-chain before the loan actually starts. It can be any
date, so long as it is anytime later than the block.timestamp and thus not expired. In a scenario where
a loan is originated on-chain unexpectedly later than the off-chain negotiation of terms, a borrower would
have a reduced time frame to repay a loan.

Mitigation

Pawn Finance proposed a mitigation of using a due date that is relative to the block.timestamp the
startLoan transaction was mined, which gives the borrower a repayment period that is consistent with
the expectations of the loan terms negotiated off-chain.

Status

The Pawn Finance team have implemented a change using block.timestamp + terms.relDueDate
to represent the dueDate, when calculating if the repayment period has passed and a loan has defaulted.

Verification

Resolved.

Suggestions

Suggestion 1: Make Users Aware of Centralization

Location

contracts/LoanCore.sol#L45

Synopsis

An administrator role DEFAULT_ADMIN_ROLE is set during the construction of the LoanCore.sol smart
contract that has centralized powers that could adversely affect all users of the Pawn Finance protocol.
The centralized DEFAULT_ADMIN_ROLE is able to pause the functions createLoan, startLoan, and
claim, which perform the core functionality of the system.

Using a pause mechanism is considered a safety feature in the event that a bug is identified, the
administrator may pause the smart contract to correct the issue before users are affected. Given the
prevalence of Miner Extractable Value (MEV) bots in the Ethereum mining ecosystem at this time, this
assumption is questionable.

Furthermore, the risk that the pause feature is used in a malicious way by the authorized entity cannot be
discounted. Therefore, the emergency stop implemented by this pattern should only be triggered as a last
resort under specific circumstances and with a minimum threshold of consensus.

Mitigation

We recommend creating documentation that outlines the specific cases in which the centralized
administrator role account is used, and providing supporting documentation describing the security

Security Audit Report | Pawn Smart Contracts | Pawn Finance 8
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/pawnfi-contracts/blob/270108f9c921168574a8f8a0134b405aefb228a8/contracts/OriginationController.sol#L64-L65
https://github.com/Non-fungible-Technologies/pawnfi-contracts/commit/0cff1aafde0c6b40cbe30e2a1c9a6be9516ca820
https://github.com/LeastAuthority/pawnfi-contracts/blob/master/contracts/LoanCore.sol#L45

benefits and trade-offs of the administrator role. We also suggest making users aware of these trade-offs
so that they may make informed security decisions.

Status

The Pawn Finance team responded they intend to address this suggestion in the future. As a result, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Suggestion 2: Remove Unnecessary Require Statement

Location

contracts/LoanCore.sol#L82

Synopsis

The require statement in LoanCore.sol (Line 82) checks if the collateral from the borrower has not
been created or already been burned by checking if the NFT ID is assigned to address(0). This check
burns gas and includes an error string, which adds to the cost of deployment since strings are an
expensive datatype to deploy on the Ethereum blockchain. However, the startLoan function performs
its own check on the address in LoanCore.sol (Line 106) when the collateral is transferred. Therefore,
the check is effectively performed twice.

We investigated the security implications of omitting the require statement in LoanCore.sol (Line 82)
and found the collateral check performed in the function startLoan to be sufficient.

Mitigation

We recommend removing the require statement in LoanCore.sol (Line 82) to save on gas incurred
from the check and the deployment of the error string associated with it.

Status

The Pawn Finance team removed the require statement in LoanCore.sol (Lines 85 - 88).

However, the check performed by the startLoan function in LoanCore.sol (Line 106) when the
collateral is transferred was deleted in a later commit (see Issue A). The same functionality is found in
code added during the same commit that calls transferFrom on collateralToken and, as a result,
we consider this suggestion resolved.

Verification

Resolved.

Suggestion 3: Improve Documentation

Location

pawnfi-contracts#readme

docs/interfaces/IPromissoryNote.md

Security Audit Report | Pawn Smart Contracts | Pawn Finance 9
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://github.com/LeastAuthority/pawnfi-contracts/blob/master/contracts/LoanCore.sol#L82
https://github.com/LeastAuthority/pawnfi-contracts/blob/master/contracts/LoanCore.sol#L82
https://github.com/LeastAuthority/pawnfi-contracts#readme
https://github.com/LeastAuthority/pawnfi-contracts/blob/master/docs/interfaces/IPromissoryNote.md

Synopsis

Organize Documentation

The supplemental documentation provided by the Pawn Finance team is not currently available in the
project repository and is only available in externally stored pdf documents.

Consistently Document Functions

Most of the smart contracts have sufficiently documented every function, however, some are more
comprehensively documented than others (e.g. docs/interfaces/IPromissoryNote.md provides
less comprehensive documentation than some of the other smart contracts).

Mitigation

Organize Documentation

We recommend that all supplementary documentation provided by the Pawn Finance team be
incorporated into the in-scope repository, in order to provide easier access and better guidance on the
intended behavior of the system.

Consistently Document Functions

We recommend documenting all smart contracts consistently, including functions whose
implementations appear obvious, in order to reduce the potential for errors or confusion about intended
functionality.

Status

The Pawn Finance team responded they intend to address this suggestion in the future. As a result, this
suggestion remains unresolved at the time of verification.

Verification

Unresolved.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 10
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

About Least Authority
We believe that people have a fundamental right to privacy and that the use of secure solutions enables
people to more freely use the Internet and other connected technologies. We provide security consulting
services to help others make their solutions more resistant to unauthorized access to data and
unintended manipulation of the system. We support teams from the design phase through the production
launch and after.

The Least Authority team has skills for reviewing code in C, C++, Python, Haskell, Rust, Node.js, Solidity,
Go, and JavaScript for common security vulnerabilities and specific attack vectors. The team has
reviewed implementations of cryptographic protocols and distributed system architecture, including in
cryptocurrency, blockchains, payments, and smart contracts. Additionally, the team can utilize various
tools to scan code and networks and build custom tools as necessary.

Least Authority was formed in 2011 to create and further empower freedom-compatible technologies. We
moved the company to Berlin in 2016 and continue to expand our efforts. Although we are a small team,
we believe that we can have a significant impact on the world by being transparent and open about the
work we do.

For more information about our security consulting, please visit
https://leastauthority.com/security-consulting/.

Our Methodology
We like to work with a transparent process and make our reviews a collaborative effort. The goals of our
security audits are to improve the quality of systems we review and aim for sufficient remediation to help
protect users. The following is the methodology we use in our security audit process.

Manual Code Review
In manually reviewing all of the code, we look for any potential issues with code logic, error handling,
protocol and header parsing, cryptographic errors, and random number generators. We also watch for
areas where more defensive programming could reduce the risk of future mistakes and speed up future
audits. Although our primary focus is on the in-scope code, we examine dependency code and behavior
when it is relevant to a particular line of investigation.

Vulnerability Analysis
Our audit techniques included manual code analysis, user interface interaction, and whitebox penetration
testing. We look at the project's web site to get a high level understanding of what functionality the
software under review provides. We then meet with the developers to gain an appreciation of their vision
of the software. We install and use the relevant software, exploring the user interactions and roles. While
we do this, we brainstorm threat models and attack surfaces. We read design documentation, review
other audit results, search for similar projects, examine source code dependencies, skim open issue
tickets, and generally investigate details other than the implementation. We hypothesize what
vulnerabilities may be present, creating Issue entries, and for each we follow the following Issue
Investigation and Remediation process.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 11
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

https://leastauthority.com/security-consulting/

Documenting Results
We follow a conservative, transparent process for analyzing potential security vulnerabilities and seeing
them through successful remediation. Whenever a potential issue is discovered, we immediately create
an Issue entry for it in this document, even though we have not yet verified the feasibility and impact of
the issue. This process is conservative because we document our suspicions early even if they are later
shown to not represent exploitable vulnerabilities. We generally follow a process of first documenting the
suspicion with unresolved questions, then confirming the issue through code analysis, live
experimentation, or automated tests. Code analysis is the most tentative, and we strive to provide test
code, log captures, or screenshots demonstrating our confirmation. After this we analyze the feasibility of
an attack in a live system.

Suggested Solutions
We search for immediate mitigations that live deployments can take, and finally we suggest the
requirements for remediation engineering for future releases. The mitigation and remediation
recommendations should be scrutinized by the developers and deployment engineers, and successful
mitigation and remediation is an ongoing collaborative process after we deliver our report, and before the
details are made public.

Responsible Disclosure
Before our report or any details about our findings and suggested solutions are made public, we like to
work with your team to find reasonable outcomes that can be addressed as soon as possible without an
overly negative impact on pre-existing plans. Although the handling of issues must be done on a
case-by-case basis, we always like to agree on a timeline for resolution that balances the impact on the
users and the needs of your project team. We take this agreed timeline into account before publishing any
reports to avoid the necessity for full disclosure.

Security Audit Report | Pawn Smart Contracts | Pawn Finance 12
27 August 2021 by Least Authority TFA GmbH

This audit makes no statements or warranties and is for discussion purposes only.

