
 Arcade V2 Audit

 Author: Roku

 Audit Start: May 24, 2022

 Commit Hash for Audit: f1c9c43

 Scope: every contract in the contacts folder, except test folder

 Report Submitted: June 02, 2022

 Fixes Submitted: June 14, 2022

 Final Commit Hash: f7b2c6c

 Overview

 I was asked by kvk from the Arcade.xyz team to do a smart contract audit on the v2 of
 the Pawn Protocol. This is a report that concludes what I find and provides suggestions
 that aim to improve security or reduce the complexity of the codebase.

 Pawn is a protocol built for decentralized NFTs lending. The core protocol offers legacy
 lending features and a more advanced kind of loan with “installment”, which gives lenders
 a more stable income stream throughout the duration of the loan.

 The codebase is very well documented and tested . The test suits achieved 100%
 statement coverage and 100% branch coverage on core functions, (98% in total). The test
 suite is also very well organized and covers various kinds of scenarios, which make it very
 easy to understand what the system is supposed to behave, also gave me an ease while
 trying to write up some exploit scenarios. Overall, the codebase gave me a high confidence
 in the engineering team in terms of security process and expertise.

 I concluded the 6-day audit with 1 high severity, 1 medium severity and 2 low severity
 findings.

https://twitter.com/rokueth
https://github.com/Non-fungible-Technologies/v2-contracts/tree/f1c9c43bc9f409b478c9b19db866df734cda223e
https://github.com/Non-fungible-Technologies/v2-contracts/commit/f7b2c6cc8b32c77e3be6fde7b85256ba721f243f
https://twitter.com/kvk0x

 Findings

 High Severity

 (H-1) Borrower with loans with installment can keep paying the
 minimum interest, and never repay the capital nor get “liquidated”.

 In the function _verifyDefaultedLoan , if it’s a loan with installment, it only checks if the
 number of missed installments is < 40% of total number of installments.

 This leads to scenarios when the borrower still keeps paying the ‘minimum’ interest, it
 will make the loan “non defaultable”, and the lender will have no way to get his principle
 back even after the duration.

 Suggestion:

 consider adding a deadline check (similar to legacy loans), and let the lender use claim
 function after deadline + grace period.

 Response:

 Status: Fixed

 Fix Commit: 18d25ce57bc7fdd70ab722e8ec9f56abad05b4fb

 PR: https://github.com/Non-fungible-Technologies/v2-contracts/pull/43

 Medium Severity

 (M-1) No protection on PunkRouter.depositPunk

 In the PunkRouter, the contract wraps the Punk NFT into wrappedPunk, and sends it into
 the AssetVault address user specified. The code is relatively straight forward:

https://github.com/Non-fungible-Technologies/v2-contracts/commit/18d25ce57bc7fdd70ab722e8ec9f56abad05b4fb
https://github.com/Non-fungible-Technologies/v2-contracts/pull/43

 However, given the relatively complex design of bundleId and asset vault, it is possible
 that a user might specify the wrong bundleId and result in a wrong address receiving
 the wrapPunk. (Using vault address as NFT id is smart, but it is somehow
 counterintuitive).

 Suggestion

 I suggest doing the one following to lower the risk of making a mistake:

 ● instead of using boundleId (uint256), specifying recipient as an address is more

 intuitive and general.

 ● keep the boundleId , but add an additional check with VaultFactory to see if this

 bundleId is valid. (expose an exist() function)

 Response:

 Status: Fixed

 Fix Commit: f40e357879e9f7687c381bd99976645f401b11b3

 PR: https://github.com/Non-fungible-Technologies/v2-contracts/pull/33

 Comments from the team:

 Arcade.xyz team decided to remove PunkRouter entirely. Any lack of native support for
 CryptoPunks in an AssetVault would be error-prone and could temporarily freeze assets, in
 case a user mistakenly sent a punk to their vault. By adding native support for CryptoPunks
 in AssetVault via the withdrawPunk function, the PunkRouter became obsolete. We believe
 this is a less error-prone solution that removes both the risk of sending unwrapped punks
 to the vault, and providing the incorrect vault ID in the old PunkRouter depositPunk
 function.

https://github.com/Non-fungible-Technologies/v2-contracts/commit/f40e357879e9f7687c381bd99976645f401b11b3
https://github.com/Non-fungible-Technologies/v2-contracts/pull/33

 Low Severity

 (L-1) Borrower can force to rollover loans with installments and let the
 lender get less than expected.

 In the rollover function, there’s no restriction around the loan’s duration. So there’s no
 way for a lender to stop a rollover, as long as the borrower pays back what is owed for the
 period borrowed. For a legacy loan, there is no issue the borrower has to pay back full
 interest. But for loans with installments, it’s possible that the lender agrees on a longer
 period and expects a passive income out of it, but then the loan is forced to rollover into a
 new one and he only gets paid the interest for the first few “periods”.

 Suggestion

 It seems like it can be either a “feature” or “bug”, but it has to be communicated well to
 the lender and documented in the code. If this is not an expected behavior, consider adding
 a constraint on minimum % of installments being “passed” before rollover can be triggered.

 Response

 Status: Acknowledged

 Comments from the team:

 As discussed in the initial report, this is a desired feature. The goal of the protocol is to
 encourage a competitive lending market - thus, if the borrower receives a "better offer",
 they should be able to use rollovers to switch to the new lender with the better terms. It's
 true that early repayment results in receiving less than the full term's interest - this is true in
 the case of both rollovers and standard repayment.

 Comments from Roku:

 I initially categorized this as a Med severity finding, because it seems like an unexpected
 behavior for lenders. But after discussion with the team, they confirmed that this is a
 desired feature and I agree that this will make the overall system more healthy. Just
 needed to be communicated properly on their interface.

 (L-2) Fee is not capped

 there’s no upper bound on originationFee or rollOverFee , introducing unnecessary
 centralization risk (or key risk). The owner of FeeCollector has the ability to set fee to 100%
 and instantly withdraw principal, making the borrower getting 0 out of a loan.

 Since the owner of LoanCore can update the feeCollector, the risk of losing key for
 feeCollector and freezing funds is low. But still, it would make the system safer if the upper
 bound is enforced by the contract.

 Response

 Status: Fixed

 Fix Commit: 94c2302c98e113fc544167ffcbe87bd8e154a6f2

 PR: https://github.com/Non-fungible-Technologies/v2-contracts/pull/28

 Minor Issues / Suggestions

 (1) Wrong comments

 in errors/Lending.sol :

 ● in natspec of error OC_NumberInstallments
 Loan terms must have an even number of installments. but this isn’t checked, nor
 applied the actual logic calculation

 ● wrong comment on LC_BalanceGTZero and LC_NonceUsed

 in OriginationController :

 // interest rate must be greater than or equal to 0.01%

 // and less than 10,000% (1e8 basis points)

 if (terms.interestRate < 1e18 || terms.interestRate > 1e24) revert
 OC_InterestRate(terms.interestRate);

 ● should be 1e18 basis points.

https://github.com/Non-fungible-Technologies/v2-contracts/commit/94c2302c98e113fc544167ffcbe87bd8e154a6f2
https://github.com/Non-fungible-Technologies/v2-contracts/pull/28

 Response:

 Status: Fixed

 Fix Commit: f078e4a9a669bd307cd1a3d807880ea19ce8a3c8

 PR: https://github.com/Non-fungible-Technologies/v2-contracts/pull/42

 (2) Remove hardcoded function selector & fix invalid tests in
 whitelist module

 The following syntax increases readability, and doesn’t increase gas cost because
 everything will be set at compile time.

 Also, some issues in the test files: The tests in CallWhitelist.ts around blacklisted
 selectors are invalid , because it uses isWhitelisted interface to check if it returns false,
 but the function won’t return true unless it’s whitelisted && not blacklisted. The effective
 tests should be as follow:

https://github.com/Non-fungible-Technologies/v2-contracts/commit/f078e4a9a669bd307cd1a3d807880ea19ce8a3c8
https://github.com/Non-fungible-Technologies/v2-contracts/pull/42

 Or even add tests that even if the selector is being added as whitelisted by the owner,
 isWhitelisted will still return false .

 Response

 Status: Fixed

 Fix Commit: 3643c4c357ba08a721baf469483c2aa5a5dfcc9b

 PR: https://github.com/Non-fungible-Technologies/v2-contracts/pull/38

 (3) Optimize repay and repayPart functions

 in repay function of LoanCore , it can reduce gas spent on transfer if core function just do
 one safeTransferFrom to get money from msg.sender to lender at the end of the
 function, instead of

 This also applies better to the check-effect-interaction pattern.

https://github.com/Non-fungible-Technologies/v2-contracts/commit/3643c4c357ba08a721baf469483c2aa5a5dfcc9b
https://github.com/Non-fungible-Technologies/v2-contracts/pull/38

 It can further be optimized by using transferFrom(borrower, lender) directly, instead of
 having the Repayment Controller as a proxy.

 Similarly, in function repayPart , amount of token paymentTotal is charged from the user
 first, but then boundedPaymentTotal is sent to the lender:

 This introduces extra logic to deal with refunds.

 A better pattern is to only pull the boundedPaymentTotal, and transfer to the lender
 directly.

 This would only require changing borrower to approve the core contract instead of
 RepayController, instead of dealing with refund.

 Response

 Status: Acknowledged

 Comments from the team

 The changes for both minor fixes 3 and 4 are very similar and investigated at the same
 time. The suggestions related to the checks-effects-interactions pattern was also
 suggested by the Quantstamp audit. These comments are related to moving
 ̀safeTransferFrom` at the top of both the repay and repayPart functions to the bottom
 where the other transfer methods are located. This would allow `repay and `repayPart` to
 conform to the checks-effects-interactions pattern. After this change was made, every test
 was run (`yarn test`) and there were no new failing tests.

 Subsequently, in the comment in minor 3 and 4 for Roku there is also the suggestion to
 remove the first transfer method in each `repay` and `repayPart` and only have one transfer
 method that goes directly from the borrower to the lender. As opposed to in the current
 setup LoanCore contract is the middle man for these transfers. Theoretically, this makes
 sense but in the implementation we ran into a concerning issue. After this change was

 made, all tests were run (`yarn test`) and there were 2 new failing tests which were not
 failing previously. After investigation we found that at the end of the 2 tests,the balance
 checks for the borrower and lender were failing. After some more investigation it was
 found that the tests would only pass when their parameters were not equal whereas before
 they were. See below. Image 1 is the old test before change, image 2 is the new test after
 change.

 Before audit changes

 After audit changes

 Both of these tests passed with their respective protocols, which makes the team
 concerned that the order and routing of payments has been done with a purpose since we
 have inherited this payment pattern from the legacy (V1) contracts. With this being said we
 opted to not change the contracts to make a direct transfer from borrower to lender upon
 repayment and have opted to go with our current pattern of using LoanCore as a
 middleman between the two parties.

 (4) Minor suggestion on canCallOn optimization

 Function canCallOn should let the calling contract (or user) specify an id that proves it
 has ownership over the call, instead of using an exhausted on-chain loop.

 Response
 Status: Acknowledged

 Comments from the team
 After reviewing this change, the team opted to stick with our current implementation of

 ̀canCallOn`. The reasoning behind this decision was for a few reasons, but mainly we saw
 this change as being invasive enough as to create breaking changes, and needing to
 possibly specify a loan ID as well as the vault address. This could become confusing for
 users and we do not expect borrowers to have hundreds of borrower notes at one time
 since they are burned after the loans lifecycle is over. Along the same lines, we did not see
 a big benefit to adding additional storage for this logic and opted to reuse the data
 available.

 Closing & Disclaimer
 This report should only be used as a material for users to better assess the risk of using

 the protocol, not as any sort of proof or guarantee of safety of investments.

 It’s been an honor working with the Arcade.xyz team, they have been helpful throughout
 my audit process, also carefully reviewing all the issues I raised. I would suggest auditors
 to work with them.

